

DMM-3T
DIGITAL MULTIMETER
INDICATOR
three-phase

www.fif.com.pl

F&F products are covered by a 24 months warranty from date of purchase

Information of safety use of multimeter are identified by symbols. All information and recommendations bearing these symbols should be strictly observed.

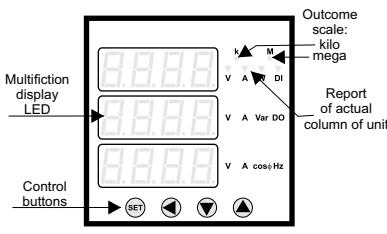
Danger of electric shock.

The potentially dangerous situation which could lead to threats to personnel or damage to the operating of multimeter.

Information concerning the construction, operation and maintenance of multimeter.

Important information, a valuable tip.

Practical advice, solve the problem.


An example of the use or performance.

INTRODUCTION

DMM-3T is a microprocessor multimeter designed for monitoring three-phase power supply. Multimeter enables execution of high precision measurements of all the basic network parameters, such as phase voltages and currents, voltage wire, frequency, active power, passive power, apparent power, and power ratio. In addition, multimeter enables full, four-quadrant measure of energy (both charged, and casted to the network).

To monitor of the measured svalues and configuration of the equipment used is located on the front panel multifunction display, and LEDs. Programming of multimeter allows four-buttons keyboard. Built-in RS485 interface, and implemented a communication protocol MODBUS RTU, communication device provides a wide range of hardware and software industries.

HANDLING OF MULTIMETER

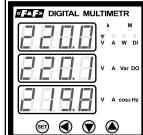
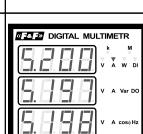
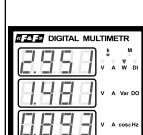
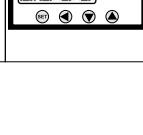
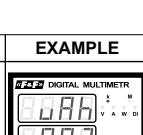
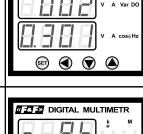
Picture 5) View of control panel

In order to ensure a comfortable handle of multimeter on the control panel was placed three lines multifunction LED display and six LEDs to indicate the measured value and unit of scale result. The programming device is used four control buttons:

In monitor mode (display of measured values), press this button to go to the programming mode of multimeter. In programming mode, this button is used to enter the selection of menus, and saving the parameter values..

The move button. When you move on the menus of press it cause to return to the previous menu item. In the numerical change mode of value of parameter, press it cause to move the cursor one digit to the left. When the value is displayed the total active power, passive power, or total ratio of power, the press it can see the successive measured values for the various phases..

In programming mode, the buttons are used to increase or decrease the value of the parameter being edited. In monitor mode, the buttons are used to switch on preview of the next measured value (Table 6)







MONITOR

The primary mode of multimeter is the monitor mode that displays the measured values. Depending on configuration, it is possible to set a continuous display of views of one of the eight measured values, or cyclical switch between them. The displayed value can be directly changed from the keyboard by pressing buttons Δ or ∇ .

Detailed discussion of the various views presented on the following pages (Table 6). The program way of set the views will be presented in further parts of the instructions.

Please take particular attention to the explanations of communications as part of the value is displayed in two rows of the display, which can lead to misinterpretation of results.

SYMBOL	EXAMPLE	DESCRIPTION
0		Cyclic view of all monitored values.
1		Values of voltage: U _A , U _B , U _C - to four-wire network; U _{AB} , U _{BC} , U _{AC} - to three-wire network Example: voltage U _A = 220.0 V voltage U _B = 220.1 V voltage U _C = 219.8 V To observe the voltage between wires of four wire network press the button .
2		Values of phases current. Example: current I _A = 5.200 A current I _B = 5.197 A current I _C = 5.198 A
3		Displayed various values Example: Total active power 2.951 kW Total passive power 1.481 kvar Total power ratio 0.893 (the sign of power ratio complies with the sign of the active power) To see the power values for the various phases, press .
4		Monitoring: Digital inputs (the first row of display), Frequency (the third row of display) Example: Inputs: fourth and first are opened, second and third are closed Frequency: 50.04 Hz
5		Displayed plus value of active power. Shown on the example of the value of taken active power; 116.304 kWh:
6		Displayed negative value of active power. Shown on the example of the value of casted active power; 15.864 kWh

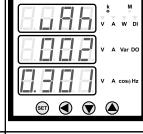
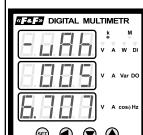
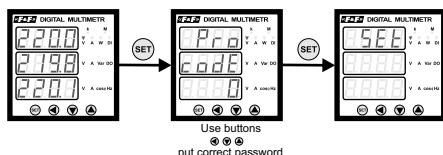



SYMBOL	EXAMPLE	DESCRIPTION
7		Display plus value of passive power. Shown on the example of the value of taken passive power 20.301 kvarh
8		Display negative value of passive power. Shown on the example of the value of casted passive power 56.707 kvarh

Table 6) Summary of views of the measured volumes.

CONFIGURATION

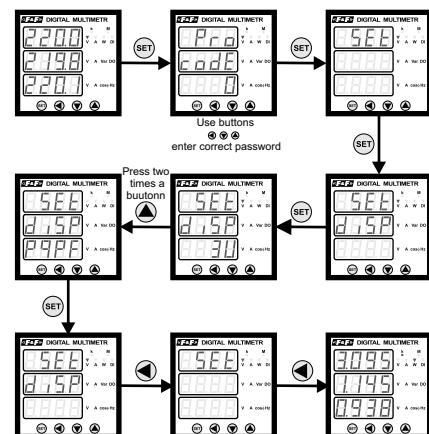
To access the configuration options should be in monitor mode, press the SET button. Next, put a password to access the device and enter it with the SET. An example of the case is shown in the following picture.

Picture 6) Diagram of entering access password.

The new device have default set password on the value 0.

Menu is organized on a hierarchical order. To navigate the menus, use the and buttons. The pass to the submenu, or to edit the parameter allows the SET button, while the withdrawal of the higher-level menu provides button .

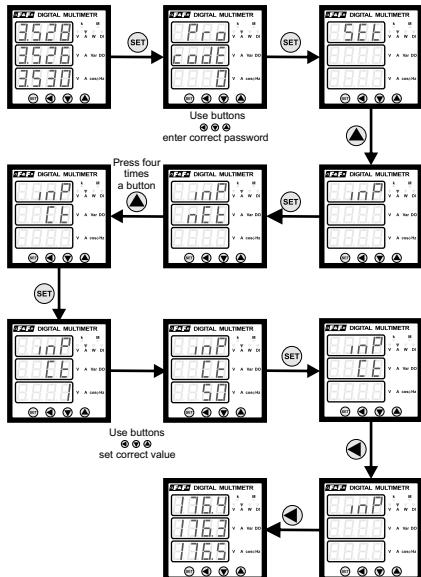
As presented in the following pages are presented in Table 8, all configuration options of multimeter.



Particular attention should be taken in the event of a change password to access the parameters. Do not remember the new password will prevent access to the configuration multimeter.

MESSAGE ON DISPLAY				DESCRIPTION
FIRST ROW	SECOND ROW	THIRD ROW	VALUE OF PARAMETER	
0Pro	code	0000	/	Entering password (enter - by button SET)
0SEL	disp	0000		Select information displayed in monitor mode (Table 8)
0SEL	0000	1.0 ~ 20.0		Display time (in sec.) of various parameters in the cyclical switching views.
0SEL	0000	0 ~ 50		Fixed digital filter (up to the number of samples averaged will be measured).
0SEL	0000	0 ~ 9999		Defining new access password.
0SEL	0000	0YES		Pressing button SET cause reset of energy meter.

MESSAGE ON DISPLAY		VALUE OF PARAMETER	DESCRIPTION
FIRST ROW	SECOND ROW	THIRD ROW	
Set parameters of measured network			
	0REF	00000 0n33	Type of connected network: n3.3 - three-wire network n3.4 - four-wire network
		00000 0n34	
		00000 0577	
		00000 0100	Range of measured voltages [V]
		00000 0220	
		00000 0380	
	00000 00PE	1~ 9999	Transmission of transformer in voltage line
		00000 001A	
		00000 005A	Measurement current range [A]
	00000 00CE	1~ 9999	Transmission of transformer in current line
	00000 Addr	1 ~ 247	Address of device in MODBUS RTU (Rs485) network.
		00000 00FF	
		00000 1200	Speed transfer off - Communication disabled
		00000 2400	1200 - 1200 bit/s
		00000 4800	2400 - 2400 bit/s
		00000 9600	4800 - 4800 bit/s
		00000 9600	9600 - 9600 bit/s


Example - Program change of displayed value

Picture 7) Change of monitor settings

Example - Change value of current relay

The next picture shows the changes value of a current relay of value 1 to 50.

Picture 8) Change settings of current relay.

COMMUNICATION PROTOCOL

Multimeter DMM-3T is equipped with RS485 interface and it supports the MODBUS RTU communication protocol.

Communications in MODBUS RTU network is paramount between the device (MASTER) and child devices (SLAVE). However, communication may only make your MASTER, but devices of type SLAVE can only respond to query.

Data between device and child device are sent in the form of bytes arranged in 11-bit packages. Each package starts with a start bit (value zero), then is sent to the byte with data(8 bits), and finally sent two stop bit (value one).

Individual packages make up the frame of a certain communication structure::

ADDRESS	FUNCTION	DATA	CRC
1 BYTE	1 BYTE	N BYTES	2 BYTES

Table 10) The format of the frame of data protocol MODBUS RTU.

The device MASTER begins to each frame from the address of SLAVE device to which the consignment is addressed. Each device SLAVE must have a unique address from 1 to 247. In the event that the SLAVE device sends a response to query, it is placed in the address field the address of its own to identify the network address. It make possible from where came the respond. The next byte frames sent by the MASTER device contains the code to be executed by the device SLAVE. In response SLAVE sends a frame with the same function code:

03H - The number of registers to read from the device SLAVE

10H - The command to save many records for the device SLAVE.

(More detailed information about this topic can be found later in this guide). Subsequently, the sending or receiving data. The number of transmitted data depends on the function code.

After sending / receiving of data frames are attached to two bytes of the CRC checksum. CRC sum is intended to eliminate errors that may occur during transmission, for example due to the impact of strong electromagnetic interference. A checksum is always preparing a device which sends data frame. Receiving device then calculates the CRC again with the data received and compares the received value. If the sum of the two match, the device proceeds to the processing of orders. If you receive an error message that is ignored.

To calculate the sum of the CRC is taken into account, only eight bits of data in each packet. Does not take into account the start bit and stop bits.

The checksum algorithm is as follows:

- 1) Prepared a special 16-bit register (denote it by REGISTER_CRC) to which the recorded value is FFFFH.
- 2) Then calculated the function XOR (Exclusive-Or) between the first received data byte and the another byte REGISTER_CRC.
- 3) REGISTER_CRC is shifts by one bit to the right, in addition to free space on the right side by zero.
- 4) Checks the value of the bit which has been "pushed" from the register this transfer. If its value was zero, then again repeats the second step. If the value of the bit was one, then the content of REGISTER_CRC is calculated XOR function with the value A001H.
- 5) Repeated the third and fourth step until the whole process the received data byte. That is so long until done eight shifts of REGISTER_CRC to right.
- 6) You must repeat the operation from the second to the fifth step, the next byte of data is received.
- 7) When processed in this way will be the first five bytes of data, determining a checksum is completed. Value of the sum will be stored in REGISTER_CRC.

ERROR PROCESSING

If an error is etched in the transmitted information (other than the sum of incorrect CRC) receiving device will react to it by sending a specially crafted error.

This communication consists of five bytes. The first byte of the address. The second byte contains a code taken from the order in which to beat the highest value was further set to one (to distinguish it from the code function error code). Next byte contains the code of one of the four described in Table 11 errors. Communication frame ends two bytes with the sum CRC.

Code	Error name	Error description
01H	Wrong function code	This device do not support order with that code
02H	Wrong register number	Address of register is located outside the device's address
03H	Wrong number of registers	Number of registers to read/write addresses exceeds the area
04H	Wrong content of register	Number recorded in the register exceeds the permitted value for

Table 11) Error codes gives by multimeter

Example - Reading data from the multimeter

This example contains a sample frame of retrieving the device SLAVE address 01H contents of two registers, starting with the register address 28H.

Device address	01H
Read command code contents of registers	03H
Address of first register to be read	Up byte 00H Up byte 28H
Number of the read registers	Up byte 00H Up byte 02H
Checksum CRC	Up byte 44H Up byte 03H

Table 12) Message from device MASTER to SLAVE.

Device address	01H
Read command code contents of registers	03H
Contents of register 028H	Up byte 44H Up byte 89H
Contents of register 029H	Up byte 80H Up byte 00H
Contents of register CRC	Up byte 5EH Up byte E9H

Table 13) Respond of device SLAVE to MASTER

Example- Recording registers to multimeter

This example contains a sample frame saves to record three numbers multimeter 0001H, 0002H and 0064H. These numbers will be stored in three registers, starting with the register address 04H.

Device address	01H
Save command code to register	10H
Address of first save register	Up byte 00H Lower byte 04H
Number of save register	Up byte 00H Lower byte 03H
Value wrote to registry 04H	Up byte 00H Lower byte 01H
Value wrote to registry 05H	Up byte 00H Lower byte 02H
Value wrote to registry 06H	Up byte 00H Lower byte 64H
Checksum CRC	Up byte 3AH Lower byte BEH

Table 14) Message from device MASTER to SLAVE.

Device address	01H
Save command data to register	10H
Address of first save register	Up byte 00H Lower byte 04H
Number of save registers	Up byte 00H Lower byte 03H
Checksum CRC	Up byte C1H Lower byte C9H

Table 15) Respond from device SLAVE to MASTER

REGISTER LIST

In two next tables, all records are arranged by multimeter available through the communication interface.

Configuration parameter values presented in Table 16, are recorded in a whole number. It follows that the parameters which are defined with an precision of one digit after the decimal point, shall be kept in registers in the form of actual multiplied by 10 So for example, 10.3 -> 103

ADDRESS	SYMBOL	DESCRIPTION	TYPE	ATR.
00H	diSP	Selection of displayed note (Table 4)	int	R/W
01H	t	Display the next time parameters (the cyclical switching views)	int	R/W
02H	FiLt	Fixed digital filter (with how many samples will be averaged with the measurements)	int	R/W
03H	codE	Defining a new password value	int	R/W
04H	nEt	Type of connected electrical network	int	R/W
05H	U	Range of measured voltages	int	R/W
06H	Pt	Transmission of voltage transformer	int	R/W

ADDRESS	SYMBOL	DESCRIPTION	TYPE	ATR.
07H	A	Range of measured currents	int	R/W
08H	Ct	Transmission of current transformer	int	R/W
09H	Addr	Address of device in Modbus network	int	R/W
0AH	bAud	Transmission speed in Modbus network	int	R/W
0BH	AL1P	Channel 1 - Alarm source	int	R/W
0CH	AL1L	Channel 1 - Low threshold of alarm	int	R/W
0DH	AL1H	Channel 1 - Up threshold of alarm	int	R/W
0EH	AL2P	Channel 2 - Alarm source	int	R/W
0FH	AL2L	Channel 2 - Low threshold of alarm	int	R/W
10H	AL2H	Channel 2 - Up threshold of alarm	int	R/W
11H	AL3P	Channel 3 - Alarm source	int	R/W
12H	AL3L	Channel 3 - Low threshold of alarm	int	R/W
13H	AL3H	Channel 3 - Up threshold of alarm	int	R/W
14H	AL4P	Channel 4 - Alarm source	int	R/W
15H	AL4L	Channel 4 - Low threshold of alarm	int	R/W
16H	AL4H	Channel 4 - Up threshold of alarm	int	R/W
17H	dF.dt	Delay of alarm activation	int	R/W
18H	Sd1P	Signal on output OUT1	int	R/W
19H	Sd1L	Low value of signal on OUT1	int	R/W
1AH	Sd1H	Up value of signal on OUT1	int	R/W
1BH	Sd2P	Signal on output OUT2	int	R/W
1CH	Sd2L	Low value of signal on OUT2	int	R/W
1DH	Sd2H	Up value of signal on OUT2	int	R/W
1EH	Sd3P	Signal on output OUT3	int	R/W
1FH	Sd3L	Low value of signal on OUT3	int	R/W
20H	Sd3H	Up value of signal on OUT3	int	R/W
21H	Sd4P	Signal on output OUT4	int	R/W
22H	Sd4L	Low value of signal on OUT4	int	R/W
23H	Sd4H	Up value of signal on OUT4	int	R/W
24H	Sdt	Work mode of analog outputs	int	R/W

Table 16) Register list with configuration parameters

ADDRESS	SYMBOL	DESCRIPTION	TYPE	ATR.
25H	WRST	Entering into this register the value 0x55AA will reset state energy meters	int	R/W
26H	DO	The first four bits of this register correspond to the successive digital outputs (0 - joint open, 1 - joint closed)	int	R/W
27H	DI	The first four bits of this register correspond to the successive digital inputs (0 - contact open, 1 - contact closed)	int	R
28H	PA	Phase A - Active power [W]	float	R
29H	PB	Phase B - Active power [W]	float	R
2CH	PC	Phase C - Active power [W]	float	R
2EH	PT	Total active power [W]	float	R
30H	QA	Phase A - Passive power [var]	float	R
31H	QB	Phase B - Passive power [var]	float	R
34H	QC	Phase C - Passive power [var]	float	R
36H	QT	Total passive power [var]	float	R
38H	SA	Phase A - Apparent power [VA]	float	R
39H	SB	Phase B - Apparent power [VA]	float	R
3CH	SC	Phase V - Apparent power [VA]	float	R
3EH	ST	Total apparent power [VA]	float	R

Table 16) Register list with configuration parameters

ADDRESS	SYMBOL	DESCRIPTION	TYPE	ATR.
40H	UA	Phase A - Phase voltage [V]	float	R
41H	UB	Phase B - Phase voltage [V]	float	R
42H	UC	Phase C - Phase voltage [V]	float	R
44H	45H	IA	float	R
46H	47H	IB	float	R
48H	49H	IC	float	R
4AH	4BH	Phase C - Phase current [A]	float	R
4CH	4DH	PFA	float	R
4EH	4FH	PFB	float	R
50H	51H	PFC	float	R
52H	53H	PFT	float	R
54H	55H	FREQ	float	R
56H	57H	UAB	float	R
58H	59H	UBC	float	R
5AH	5BH	UCA	float	R
5CH	5DH	+Wh	float	R
5EH	5FH	-Wh	float	R
60H	61H	+varh	float	R
62H	63H	-varh	float	R

Table 17) Register list with measure values.

LEGEND:

ATR - Atribut of register

R - Values only to read

R/W - Value to read and save

TYPE - Format with in the number is stored in memory.

int - Integer with a sign, with a length of two bytes (16 bits). First, the upper byte is written to a number (address), then the lower (ADDRESS+ 1). The highest bit indicates the sign of the number: 0 - number of positive, 1 - negative number. The registry of type int so you can store integers in the range -32,768 + 32,767.

float - four-byte number of Floating, recorded in accordance with IEEE-754. Number format is presented in Table 18

ADDRESS	ADDRESS + 1	ADDRESS + 2	ADDRESS + 3	ADDRESS + 4
CONTENS	SEEEEEEE	EMMMMMMM	MMMMMMMM	MMMMMMMM

Table 18) Format number type float

where:

S - bit of sign (0 - positive number, 1 - negative number)

E - 8-bit feature

M - 23-bit mantissa

Limiting the number of the form shown in Table 18, to a real number *F* takes place according to the following dependencies.

$$F = (-1)^S \cdot 2^{(E-127)} \cdot (1 + M / 2^{23})$$

EXAMPLE - record the number of actual -12.5 (type is C1480000H hexadecimal) as the number of float

ADDRESS	ADDRESS +1	ADDRESS +2	ADDRESS +3	ADDRESS +4
HEX	C1F	48F	00F	00F
BIN	11000001	01001000	00000000	00000000

ASSEMBLY

ATTENTION!

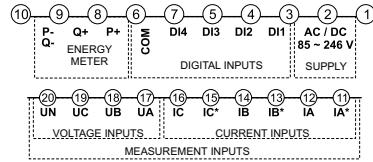
Multimeter installations and connections must be made by qualified personnel. Should take into account all available protection requirements

The table should be prepared hole with dimensions corresponding to the size of the panel. Thickness of the material from which made the array must not exceed 10mm.

STERING PANEL		FRAM SIZE		MOUNT HOLE	
TYPE	LEN	WID.	LEN	WID.	DEP.
96 x 96	96	96	91	91	100
					92

Table 6: Frame size and mounting hole

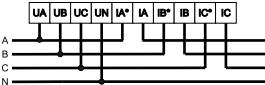
ATTENTION!



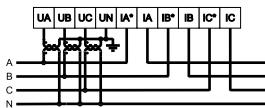
Do not install equipment which is damaged or incomplete.

Multimeter should be put on the front plate, with all the cables separated. When you insert to a hole, attach the measure through the introduction of the handles on the side of the housing, and then pushing them to the surface of the plate.

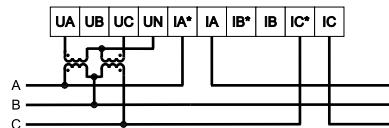
After mounting the multimeter on the plate, you're ready to connect cabling. Schematic layout of pins is shown in picture 1.

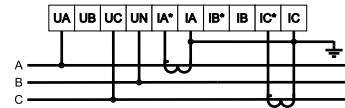

Picture 1: Location of layout

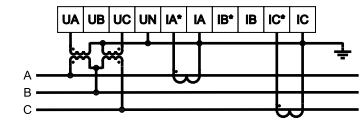
ATTENTION!


It is recommended that the power supply circuit breaker was switched multimeter 1A. In the case of very fluktuance source voltage is recommended to use additional filters.

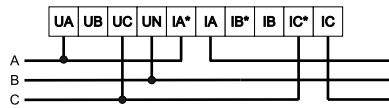
Measured three-phase network, depending on the type of network, and the values of voltages and currents should be connected to the multimeter to one of the ways shown in Picture 2 (for four-wire network) or in Picture 3 (for three-wire network).


Picture 2: Connection diagram for four-wire network


a) Direct measurement of voltage and current


b) Indirect measurement of voltage and direct current measurement

b) Indirect measurement of voltage and direct current measurement



c) Direct measurement of voltage and indirect current measurement

d) Indirect measurement of voltage and current

Picture 3) Connection diagram for three-wire network.

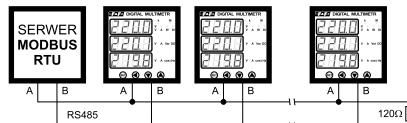
a) Direct measurement of voltage and current

When indirect measurement of voltages and currents, remember to account for the size of configuration parameters multimeter value of voltage and current transmission.

d) Indirect measurement of voltage and current

CONNECTING EXTERNAL DEVICES

PULSE OUTPUT OF ENERGY METER


This is an optically isolated output transistor as open collector (OC). Maximum voltage applied to the transistor must be less than 48V and the current flowing through the transistor less than 50 mA.

Outputs pulse of energy meter indicates the actual energy measured by a multimeter. In the case of current transformers or voltage, multiply the result obtained by the value of the transmission. Outputs pulse power meter indicates the actual power measured by a multimeter. In the case of current transformers or voltage, multiply the result obtained by the value of the voltage and current transmission.

RS485 COMMUNICATION PORT

Multimeter enables communication with external devices by the RS485 interface and MODBUS RTU protocol. The RS485 network can also be connected to a 32 devices (Picture 4), each of them must have its own unique address.

Picture 4) Device connection in RS485 network

ENERGY METER	OUTPUT	Dual-channel transistor output IMPULSE (OC) with optoisolation
	STABLE OF PULSING	Active power: 10000 imp/kWh Passive power: 10000 imp /kVArh
COMMUNICATION PROTOCOL	INTERFACE	RS 485
	PROTOKÓL	MODBUS RTU
	TRANSMISSION SPEED	1200, 2400, 4800, 9600 bps
DIGITAL INPUTS	NUMBER OF CHANNELS	FOUR
	INPUT SIGNAL	JOINT WITHOUT CURRENT (TO COM JOINT)

Table 3: Parameters of signal inputs/outputs.

CLASS OF PRECISION	VOLTAGE, CURRENT	$\pm (0.5\% \text{ OF FULL SCALE} + 1 \text{ DIGIT})$
	ACTIVE, PASSIVE, APPARENT POWER	$\pm (0.5\% P..)$
	FREQUENCY	$\pm 0.1 \text{ Hz}$
	POWER RATIO	± 0.01
	ACTIVE ENERGY	$\pm 0.5\%$
	PASSIVE ENERGY	$\pm 2\%$

Table 4: Measurement precision of devices

Connection between devices on the RS485 network should be achieved by wire-type "twisted pair" cable with a diameter of not less than 0.5 mm² and with copper braid. Communication cable should be kept as far away from high voltage wires and other sources of strong interference. Maximum length shall not exceed 1200m. At the end of the line signal must appear as a terminator as fuse 120Ω.

A detailed description of communication protocol and a summary of supported commands is given later in this manual

TECHNICAL DATA

NETWORK	THREE-PASES, THREE OR FOUR - WIRE
	AC: 230V; 400V
	120% U _{2n} - continuous; 200% U _{2n} - by 30 SEC.
	< 0.5 VA / phase
	> 500 kΩ / phase
	AC: 1A, 5A
	120% I _{2n} - continuous; 2000% U _{2n} - by 1 SEC.
	< 20 mΩ / phase
	45 - 65 Hz

Table 2: Parameters measuring voltage and current inputs

To obtain the greatest possible precision voltage and current measuring ranges should be (and possibly a transformer voltage and current) chosen in such a way that the measured volume adopt as much value.

SUPPLY	VOLTAGE SUPPLY	AC/DC, 85 ~ 264 V
	POWER CONSUMPTION	< 5 VA
	VOLTAGE TESTS FOR ENTER MEASUREMENT AND POWER	> 2 KV (50 Hz) / 1 sec
	VOLTAGE TESTS FOR INPUT/OUTPUT CONTROL	> 1 KV (50 Hz) / 1 sec
PROTECTION	RESISTANCE OF ISOLATION	> 20 MΩ [*]
	PROTECTION LEVEL	Fron panel: IP42 Connection: IP20
	TEMPERATURE	Functioning: -10 ~ 50 °C Storage: -25 ~ 70 °C
ENVIRONMENTAL CONDITION	HUMIDITY	85%, non-condensing aggressive and gas
	HIGHT	3000 m.n.p.m.

Table 5: Work condition.

WARRANTY

1. The duration of the warranty is 24 months from the date of purchase.
2. The warranty is valid with the receipt only.
3. Complaints must be filed at the point of purchase or directly with the producer (tel. no. 42-2270971, e-mail: dztech@fif.com.pl).
4. Within the warranty period, the producer undertakes to repair or replace the relay within 14 days from the date the unit is delivered to the service point.
5. The purchaser has the right to have the relay replaced or to receive a refund if an indelible defect is revealed.
6. This warranty does not cover the following:
 - mechanical or chemical defects,
 - defects which stem from improper use contrary to the user's manual,
 - defects which appear after the unit has been sold due to accidents or other events for which neither the producer nor the point of sale can be held responsible, e.g. transport damage, etc.
7. This warranty does not cover any operations which, according to the manual, should be done by the user, e.g. mounting of the relay, installation of the electrical system, installation of other required electrical protection devices, recommended inspections and tests, etc.

ATTENTION!

No unauthorised modifications are to be made in the relay otherwise the device may be damaged or malfunction which in turn may lead to damage of the protected engine and jeopardise its operators. Should this warning be ignored, the producer cannot be held responsible for any related events and is entitled to deem this warranty invalid in the case of any complaint.

A090827